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ABSTRACT

A major thrust of DARPA’s Knowledge-Aided Sensor
Signal Processing and Expert Reasoning (KASSPER)
program is to develop radar signal processing algo-
rithms that exploit the ever expanding body of a priori
knowledge about the sensor operating environment.
Knowledge sources include digital terrain maps, land
coverage data, and the locations of man-made features
such as roads and buildings. This paper presents an
extension of knowledge-aided data pre-whitening tech-
niques based on colored diagonal loading [1,2] to low-
rank space-time adaptive processing (STAP) imple-
mentations such as extended factored post-Doppler
STAP [3] (‘multi-bin post-Doppler’ STAP). The new
implementations maintain the same desirable property
of “blending” the information contained in the
observed radar data and the a priori knowledge
sources but offer added flexibility in reducing the com-
putational complexity of the overall space-time beam-
forming solution. Furthermore, the approach has the
potential benefit of minimizing sample support
requirements by reducing the interference rank within
the chosen low-rank subspace (e.g., post-Doppler) due
to the effective pre-whitening of the data. A computa-
tionally efficient data domain implementation of the
algorithms is developed along with analytical low-rank
representations of the a priori ground clutter covari-
ance models (i.e., the colored loading matrix). The per-
formance of these reduced-DoF knowledge-aided
beamforming techniques is demonstrated using  high-
fidelity radar simulation data.    

1.  INTRODUCTION

DARPA’s Knowledge-Aided Sensor Signal Processing
and Expert Reasoning (KASSPER) program is develop-
ing radar signal processing algorithms that exploit a pri-
ori knowledge about the sensor operating environment.
Knowledge sources include digital terrain maps, land
coverage data, and the locations of man-made features
such as roads and buildings. Since radar clutter is highly
dependent on the various features represented by these
knowledge sources (e.g., clutter power is a strong func-
tion of terrain height and slope) it is logical to believe
that exploiting them will improve radar performance. 

The main problem being addressed under KASSPER
is that of incorporating knowledge sources in the beam-
former in an attempt to improve the performance of
GMTI radar. A primary focus of the program is to dem-
onstrate that by using a priori information we can sig-
nificantly reduce sample support requirements of the
adaptive clutter filters. This will generally result in
improved performance in heterogeneous clutter environ-
ments caused by effects such as site-specific terrain [4],
internal clutter motion (ICM) [5], and high densities of
targets [6,7].

Knowledge sources can generally be used to influence
the beamformer response in either a direct or indirect
manner. The indirect uses would include procedures
including the selection of training data regions based on
terrain feature databases (e.g., [6]) such as the National
Imagery and Mapping Agency (NIMA) digital terrain
elevation data (DTED) and digital features analysis data
(DFAD). Direct uses would include explicitly forcing
nulls in the beamformer response pattern based on the
known location of interference sources. This paper pre-
sents an approach for incorporating knowledge sources
directly in the space-time beamformer of airborne adap-
tive radars to improve the cancellation of ground clutter.
The a priori knowledge is incorporated into the beam-
former response via constraints involving an a priori
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site-specific clutter covariance model. The structure of
this model is similar to the models described in [4-6]
and is given by:

(1)

where , , and  are the complex amplitude, direc-
tion of arrival (DoA), and Doppler shift, respectively,
for the  ground clutter patch,  is the space-time
response vector for a signal with DoA  and Doppler
shift ,  is the Hadamard (element-wise) product, and

 is a covariance matrix taper [8] that allows for incor-
poration of effects such as calibration errors and ICM
(e.g., [5]). If this matrix is known perfectly then we
would expect optimal beamformer performance. Of
course, this matrix is never known perfectly in practical
applications due to various real-world effects. However,
parts of the model may be known and can potentially be
used in the beamformer solution. The techniques devel-
oped in this paper attempt to minimize the amount of a
priori knowledge required for computing  so as to
make the solution more useful in practice where avail-
ability of databases, sample support,  and computational
resources are likely to be limited.

Section 2 develops the knowledge-aided constraints
and appropriate weight vectors for both full- and
reduced-degree of freedom (DoF) STAP. Section 3 dis-
cusses techniques for efficient implementation of the
developed algorithms. Section 4 presents results using
high-fidelity simulated radar data and Section 5 provides
a summary and conclusions.

2.  KNOWLEDGE-AIDED CONSTRAINTS

We begin by presenting the following space-time (e.g.,
elements and pulses) interference model that helps moti-
vate the algorithms developed in this paper. The interfer-
ence received on the array is represented by

, where  represents the radar ground
clutter with second order statistics that will be assumed
to be known to some degree a priori,  is a vector that
represents small unknown random modulations and/or
errors on the clutter signal (e.g. ICM, calibration errors,
etc.), and  is the white thermal noise. The modulation

 will typically have the form  where  is a
vector of ones and  is a zero-mean random vector with
variance that is typically << 1. If we assume that  and

 are uncorrelated then the covariance matrix of  is
given as,

(2)

where  and  is an identity matrix. We see
that the clutter covariance matrix is comprised of a
known component, , and an unknown component,

. Therefore we will be interested in beamforming
solutions that combine both deterministic and adaptive
filtering to null these components, respectively.  We note
that the notion of prefiltering the ground clutter [9] or
large clutter discretes [10] followed by adaptive process-
ing has been previously suggested. 

2.1.   Full-DoF STAP

We first review the incorporation of knowledge-aided
constraints for full-DoF STAP, as presented in [2]. The
optimization problem to be solved is

(3)

where  is the full-DoF ( , M = number of
pulses, N = number of elements) data vector,  repre-
sents a desired steering direction and Doppler shift and

 is chosen to give a desired maximum gain on white
noise [11]. The quadratic inequality constraint

 [12] incorporates the a priori knowledge
by “limiting” the solution to have no more than a maxi-
mum desired gain on the dominant subspace occupied
by the a priori covariance matrix , which is com-
puted using available knowledge about the clutter envi-
ronment. We note that  will typically consist of a
dominant subspace that is much smaller in dimension
than the full space-time dimension of the system (e.g.
Brennan’s Rule [13]). The solution to this optimization
problem is (e.g., [14]),

. (4)

In practice the matrix  will be replaced with an esti-
mate of the data covariance matrix computed using
available auxiliary radar data snapshots. We see that the
solution results in the usual diagonal loading [11] term

 plus a “colored” loading [15,16] term . The
loading levels, embedded in the matrix Q defined in (4),
are chosen in order to satisfy the two coupled non-linear
inequality relations resulting from (3)

(5)

An analytical solution for the optimal value of the load-
ing coefficients  and  does not exist. They will typ-
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ically be set based on reasonable assumptions about the
interference environment and available sample support
for estimating . While it is clear that a non-trivial
weight vector requires that the white noise gain level be

, it is possible to drive the gain on the a priori
covariance matrix to zero,  .  This results in the
orthogonality of the weight vector to the dominant sub-
space of this matrix. However, the approach to this limit
leads to an unbounded increase in the required value of
the colored loading level, .  This can be demonstrated
explicitly by comparing the solution to the above qua-
dratic constraint problem to the solution when 
precisely, which then reduces the second quadratic con-
straint to a set of multiple linear constraints that can be
solved exactly [2].  Consequently, a finite level of col-
ored loading approximates the orthogonality relation.
This is a desirable property since due to unknown errors
in the clutter model it may be better to reduce the deter-
ministic “null-depth” on the clutter subspace.  Further-
more, the colored loading approach, unlike the linear
constraint approach that enforces exact orthogonality,
has the potential for efficient implementation as dis-
cussed in Section 3.   

It is interesting to note that the solution given in (4)
results in a “blending” of the information contained in
the sample covariance matrix and the a priori clutter
model. Therefore the solution has the desirable property
of combining adaptive and deterministic filtering. In
fact, the solution will provide beampatterns that are a
mix between the fully adaptive pattern, a fully determin-
istic filter, and the conventional pattern represented by
the constraint . An interesting area for future research
will be to develop rules for setting the covariance
“blending” factors based on the characteristics of the
operating environment (e.g., expected density of targets,
terrain type, etc.) derived from auxiliary databases.

Finally, we also note that the beamformer weights in
(4) can be re-written to permit interpretation as a two-
stage filter where the first stage “whitens” the data vec-
tor using the a priori covariance model, which is then
followed by an adaptive beamformer based on the whit-
ened data [2].

2.2.   Reduced-DoF STAP

For many systems it may be impractical to use the
full-DoF formulation for reasons of computational com-
plexity and the absence of sufficient sample support for
covariance estimation. In such situations, it is desirable
to reduce the number of degrees of freedom to a man-
ageable number while minimizing any loss in perfor-
mance relative to the full-DoF formulation. A common

approach [13] is to break the full-DoF problem into a
number of smaller problems via the application of an

 (with D<MN) transformation matrix, , to
the data.  The resulting reduced-DoF data and steering
vectors, both , are determined using

. (6)

The reduced-DoF covariance estimation, , is
found in the usual way using available auxiliary radar
data snapshots, transformed in this manner.  The trans-
formation is also applied to the a priori clutter covari-
ance  and thermal noise covariance  models to
produce reduced-DoF versions of these quantities

. (7)

In this paper, we focus on the reduced-DoF technique
known as extended factored or multi-bin element-space
post-Doppler STAP [3].  With this technique, ,
where the number of elements (i.e. spatial DoFs) are
preserved while the temporal DoFs are reduced, .
The temporal portion of the transformation matrix,

, consists of the M-component discrete fourier
transform at K adjacent orthogonal Doppler frequencies
with the Doppler bin under test typically the central bin
(i.e. K is odd).  The full transformation matrix is then
defined

(8)

where the Kronecker tensor product is indicated and we
define  to be the  identity matrix.  With this
formulation, and the assumption of uncorrelated thermal
noise, the thermal noise covariance, , is trans-
formed to .

In a manner similar to that of the full-DoF case, the
reduced-DoF covariance model can be incorporated into
an optimization problem for the post-Doppler weights,

, as a quadratic constraint

, (9)

along with the usual constraints of unity gain on the
desired signal, and gain on the white noise (note that the
scalar factors that result from the gain on white noise
relation have been absorbed into the reduced-DoF gain
factor ). The quadratic constraint on the reduced-
DoF a priori covariance seeks to make the weights as
orthogonal as possible to the dominant subspace of this
matrix. Comparing with (3), the form of the reduced-
DoF optimization problem is the same as that of the full-
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DoF case, except that reduced-DoF, instead of  full-DoF,
versions of the data and steering vectors, along with a
priori covariance and thermal noise matrices, are used.
As a consequence, the desired weight vector may be
derived either directly, or by analogy with the solution
of (3), to be

. (10)

As with the full-DoF case, the reduced-DoF solution
has both a diagonal and colored loading component.
Consequently, this solution can also be interpretated as a
“blending” of adaptive and deterministic information,
although less sample support is now required for the
adaptive portion. The loading levels should be deter-
mined from the reduced-DoF analogue of (5) by simply
replacing all full-DoF variables by their reduced-DoF
counterparts.  Finally, the reduced-DoF solution may
also be interpretated as a two-stage filter, with an initial
deterministic pre-whitening  stage, followed by
an adaptive stage. 

3.  IMPLEMENTATION ISSUES

This section outlines two important implementation
issues associated with colored loading. The first is prac-
tical considerations about the clutter covariance model
that relaxes the fidelity of the a priori knowledge
required by the technique and the other is methods for
efficient implementation of colored loading in the data
domain.  Finally, we examine the computational com-
plexity of two alternative approaches to implementing
reduced-DoF colored loading.

3.1.   Practical Clutter Covariance Models

In practice it may not be possible to compute the exact
colored loading matrix given in (1) if a priori knowl-
edge data such as DTED/DFAD is missing or if compu-
tational resources are limited. Therefore, it may be
necessary to work with lower fidelity versions of the
clutter covariance model. One choice is,

 (11)

where we see that the scattered power for each clutter
patch has been set to unity (for cases when no knowl-
edge of the ground clutter reflectivity is available) and
the matrix tapers  have been omitted (for cases when
no knowledge of the clutter modulation is available).

This matrix represents the ground clutter subspace and
will require knowledge about the platform heading,
speed, system PRF, relative antenna positions, and oper-
ating frequency. These are all parameters that are gener-
ally available in real-time. A computationally efficient
method for computing (11) is given in [17]. This model
will also require that the system be calibrated so that the
spatial component of the response vectors  can
be computed. While a practical system will never be
perfectly calibrated, we would expect that it will be cali-
brated to a level such that significant clutter cancellation
based on the clutter subspace model in (11) will still
result. For example, typical airborne radar systems
achieve on the order of 20 dB worth of clutter cancella-
tion using deterministic filtering techniques such as
DPCA [18]. Finally, we note that when we use the clut-
ter model given in (11) we would expect that a good
choice for the colored loading level will be a value that
results in the diagonal elements of  being approxi-
mately equal to an estimate of the clutter-to-noise ratio
(CNR) on a single element and pulse. We note that an
adequate estimate of CNR will typically be readily
obtained by observing the radar data. By setting the
loading level to a value that is close to the CNR we
would expect that under conditions of perfect calibration
the clutter model will null the deterministic ground clut-
ter to the thermal noise floor, which is the desired result. 

3.2.   Data Domain Implementation

As discussed in Section 2, colored loading is a gener-
alization of diagonal loading of covariance estimates
whereby a general matrix, , is added to the original
covariance estimate  to form a new color loaded
covariance estimate

. (12)

An adaptive weight vector is then calculated using
, where v is the steering vector of interest.

In [19], a computational assessment was performed for
several approaches to computing this weight vector in
both the covariance and data domain. In the former, the
covariance estimate is explicitly computed and manipu-
lated, while in the latter, computations are performed on
the data directly, typically using the QR decomposition
algorithm [20], without computation of the covariance
estimate. In particular, a weight determination involving
diagonal loading of the covariance estimate may be
implemented in the data domain in a computationally
efficient manner using the QR decomposition algorithm.
This is accomplished by taking advantage of the struc-
ture of the diagonal loading matrix. In fact, the computa-
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tional cost of this algorithm was shown to be essentially
equivalent to that of simply computing the covariance
matrix from the data

(13)

where the appropriate normalization constant has been
absorbed into the definition of the data vector, x. 

Colored loading may be implemented in the data
domain for the same computational cost as diagonal
loading if the color loaded matrix, Q, has certain proper-
ties.  Specifically, if the matrix Q is Hermitian and posi-
tive-definite, a new data vector, , may be defined so
that the desired colored loading matrix, (12), results

(14)

where  is the Cholesky decomposition of Q
(which only exists if Q is Hermitian and positive-defi-
nite).  The decomposition matrix C has the property of
being lower triangular (i.e. all elements above the diago-
nal are zero).  This extended data vector is very similar
to that used in the diagonal loading implementation
except that the augmented part there was a diagonal
matrix (only diagonal elements were non-zero) whereas
here the augmented part has non-zero elements below
the diagonal as well.  However, the QR decomposition,
which is performed on , only requires that the ele-
ments below the diagonal of the augmented part be non-
zero to achieve the indicated computational efficiency.
The augmented part in this case is , which is upper
traingular, and so satisfies this requirement.  Thus the
same computational cost as with diagonal loading
results.  Specifically, the cost of computing and applying
the weights using the data domain representation (with
colored loading) has about the same computational com-
plexity as simply computing the covariance estimate,
without loading, as in (13).  Of course, in the covariance
domain, the weight vector still needs to be computed,
requiring an effective inversion of the loaded covari-
ance, thus necessarily requiring more total computation
than the the data domain representation described here.
Furthermore, computation in the data domain is better
conditioned numerically than in the covariance domain,
which increases the range over which values vary, (13). 
  It is important to understand under what circumstances
the color loaded matrix, Q, satisfies the requirements of
being Hermitian and positive-definite so that this
approach may be used.  A general class of colored load-
ing matrices may be represented using

, (15)

which possesses the necessary properties when the load-
ing values, , and the elements of the diagonal
matrix, , are real, positive quantities.  This structure
accomodates the low fidelity clutter covariance model
suggested by (11), as well as higher fidelity models that
include site-specific scattering weights and ICM tapers,
as shown in (1) and [4,5].  It also accomodates reduced-
DoF versions of these matrices, as obtained using the
transformation process described by (6) and (7).

3.3.   Two Alternative Implementation Approaches

  We now consider two potential approaches to imple-
menting reduced-DoF processing with knowledge-aided
pre-filters in terms of their computational complexity.
Approach #1 is to first apply the full-DoF knowledge-
aided pre-filter to the data, and then apply the DoF-
reducing transformation, followed by reduced-DoF
adaptive beamforming.  Approach #2, reverses the first
two steps; specifically, first apply the DoF-reducing
transformation to the data and then apply the reduced-
DoF knowledge-aided pre-filter, followed by reduced-
DoF adaptive beamforming. Note that although both of
the preprocessing operations are linear, the whitening
matrix for each of the two approaches is different, thus
the two are not necessarily equivalent.

To compare these two approaches, we first represent
them mathematically.  Assuming that both the full-DoF
loading matrix, Q, (4), and its reduced-DoF counterpart,

, (10), satisfy the conditions outlined in the previous
section, they can be written in terms of their respective
Cholesky decompositions,  and , for full-DoF

(16)

and reduced-DoF

(17)

implementations respectively. For general Q, the knowl-
edge-aided pre-filter matrix is the inverse of its matrix
square root, , a quantity that requires considerable
computation to obtain.  However, if Q is Hermitian and
positive-definite, then the inverse of its Cholesky
decomposition matrix may be used as the pre-filter
instead.  This not only requires less computation than
the general pre-filter, but also permits the efficient data
domain implementation described in the previous sec-
tion.  It should also be noted that it is not necessary to
explicitly compute the inverse of the pre-filter matrices
during implementation, as they are needed only as pre-
multipliers of other quantities.  Instead, techniques such
as those described in [19] and the previous section are
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used.  In fact, both approaches examined here may be
implemented with the efficient methods previously
described. However, for succint representation of these
algorithms, the inverse notation is used.

With this notation, the resulting data vector with
Approach #1, after the full-DoF pre-filter and then the
DoF-reducing transformation, is

. (18)

The resulting data vector with Approach #2, after the
reduced-DoF transformation and then a reduced-DoF
pre-filter, is

 . (19)

If the colored loading matrix is constant with range,
then both sets of combined pre-filter/reduced-DoF
matrices,  and , may be pre-computed once, add-
ing only to the overhead of the entire operation.  In this
case, the combination that results in better detection per-
formance should be used.

However, if the colored loading matrix is a function of
range, then its respective pre-filter (i.e. Cholesky
decomposition) must be re-computed every time its
dominant subspace is adjusted.  The computational com-
plexity of this calculation scales as the number of DOFs
to the third power so that it is clearly more expensive for
the full-DoF pre-filter (Approach #1) than the reduced-
DoF pre-filter (Approach #2).  

Furthermore, as shown in [2], explicit pre-filtering
results in diagonal loading of the pre-filtered covariance
estimate, which is functionally equivalent to colored
loading of the covariance estimate from original data.
However, since the computation of the weights has the
same computational complexity whether diagonal or
colored loading is used in the data domain (when Q is
Hermitian and positive-definite) and a pre-multiplica-
tion of one matrix by another equally sized matrix (i.e.
pre-filtering) requires more computation than simply
adding two matrices of the same size (i.e. colored load-
ing) the computational complexity of Approach #2 may
be further reduced with the use of colored loading rather
than explicit pre-filtering.  If full-DoF colored loading is
used instead of full-DoF pre-filtering as the first stage of
Approach #1, a Cholesky decomposition will still be
required on the result of the reduced-DoF transformation
since, in general, the application of this transformation
matrix to the Cholesky decomposition of the full-DoF
colored loaded data matrix will not preserve its desired
triangular form.

Thus, we conclude that Approach #2 appears compu-
tationally less expensive than Approach #1.  As a result,

we have pursued the second approach in the results that
follow.  In the future, we will also compare the detection
performance of the two approaches. 

4.  RESULTS

This paper is primarily addressing the problem of min-
imizing sample support requirements in a heterogeneous
clutter environment (as opposed to the corruption of
training data). Thus, the colored loading beamformer
based on the lower fidelity clutter model given in (11)
was applied to the KASSPER Workshop ‘02 clutter-only
data set [21]. This data set simulates an L-band radar
with parameters similar to the system used under the
Multi-Channel Adaptive Radar Measurement
(MCARM) program [22] and includes site-specific clut-
ter computed using DTED Level 1. Therefore this data
set represents a generally heterogeneous clutter environ-
ment.  Moreover, array errors on the order of 5-10
degrees are included, see [21] for details. The simulated
system has 32 pulses and 11 spatial channels, e.g. 352
DoFs. Figure 1 shows the eigenvalues for a representa-
tive range bin. We see that the effective clutter rank is
approximately 50 (noise floor is at 0 dB on the plot). 

Figure 2 shows the signal-to-interference plus noise
ratio (SINR) loss [13] surfaces for a sample matrix
inverse multi-bin post-Doppler element space reduced-
DoF STAP algorithm. Three post-Doppler bins are used,

, so that the number of reduced DoFs is .
Results with 33, 66 and 99 range bins of sample support
to estimate the covariance matrix are presented, with 0
dB of diagonal loading relative to the white thermal
noise (for “diagonal loading-only”) and with the loading
parameters  and  set to 0 dB and 30 dB relative to
the thermal noise level for the colored loading beam-
former.  We see that the colored loading beamformer
performance degrades much more gracefully as the sam-
ple support is decreased. This is a desirable property
when one considers that operation in highly non-station-
ary interference environments (e.g., bistatics, severe ter-
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Fig. 1. Eigenvalues for a single range bin in the sim-
ulated data set. 
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rain, etc.) often requires highly localized training
regions.   

The space-time beamformed clutter data was post pro-
cessed with a median constant false alarm (CFAR) algo-
rithm that employed 100 range pixels and a single
Doppler pixel to compute a background noise level for
the beamformer output. The normalized beamformer
output was thresholded and the number of false alarms
was recorded. The sample processing steps were then
applied to a series of test targets in all range bins for a
specified Doppler shift. The target SNR was set to 25 dB
at the closest range bin which represents a radar cross
section of approximately 5 dBsm. The target SNR was
then reduced versus range using an inverse range to the
fourth power rule which resulted in a target SNR of 19
dB at the longest range in the simulation. The number of
targets exceeding the thresholds when processed using
the same beamformer weights and CFAR normalization
was also recorded. Pd vs. Pfa curves were then generated
using the observed number of false alarms and detec-
tions.

Figure 3 shows the Pd vs. Pfa curves for a Doppler bin
that is very close to the clutter ridge (two bins away
from the mainlobe clutter bin). We see that the colored
loading beamformer performance degrades much more
gracefully as a function of sample support than the stan-
dard post-Doppler SMI STAP algorithm with diagonal
loading only. Also shown for comparison purposes are
the results for a beamformer based on the ideal covari-
ance matrix (“ideal cov.”, with perfect knowledge of the
array manifold), and a deterministic-only filtering

derived using the colored loading matrix (“model-only”,
i.e. no adaptive component, , and no knowl-
edge of array errors).  The reduced-DoF blended color
loading approach clearly suffers some loss at this critical
Doppler bin, relative to optimal processing, but is a con-
siderable improvement over the deterministic-only
approach.  While not shown here, [2] presented a similar
comparison of diagonal -only and colored loading
results using full-DoF processing, with similar conclu-
sions. There is an expected small performance loss with
the reduced-DoF results relative to full-DoF, which
should be balanced with the considerable reduction in
computational complexity with the former relative to the
latter, since the computation of the effective inverse of
the covariance estimate needed for weight computation
scales as number of DoFs to the third power.   

Figure 4 shows the same result for a Doppler bin that
is well separated from the ground clutter. In this case we
see that all of the algorithms with adaptivity perform
well, although the diagonal-loading-only beamformer
with the lowest value of sample support still results in
somewhat degraded performance relative to the other
beamformers. Thus, it is possible to achieve near-opti-
mal performance with relatively low sample support
(roughly equal to the number of reduced DoFs) and the
colored loading beamformer under such conditions.  

Fig. 2. Post-Doppler SINR loss surfaces for varying
levels of sample support, for both diagonal loading
only (top) and colored loading (bottom).
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Fig. 3. KASSPER Simulation Pd vs. Pfa for a
Doppler bin that is very close to the clutter

Fig. 4. KASSPER Simulation Pd vs. Pfa for a
Doppler bin well-separated from clutter.
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5.  CONCLUSIONS

An approach to space-time beamforming that allows for
inclusion of a priori knowledge about the ground clutter
environment was presented and extended to reduced-
DoF STAP implementations. The approach is based on
constrained space-time beamforming and requires an a
priori ground clutter covariance model. “Soft” quadratic
constraints [1] were used that results in “colored” load-
ing of the adaptive covariance estimate that can be
implemented efficiently in the data domain.  This
approach offers a “blending” between adaptive and
deterministic filtering. Practical implementations that do
not require significant increases in available knowledge
sources or computational resources were presented and
analyzed. A preferred implementation, in terms of com-
putational efficiency, was applied to a high fidelity sim-
ulated data set. 

The techniques were shown to result in detection per-
formance that is more robust, relative to adaptive pro-
cessing only, to the limited sample support that may be
prevalent when operating in highly non-stationary clut-
ter environments, as well as better performance near the
mainbeam clutter leading to improved minimum detect-
able velocity (MDV). Future work will focus on further
demonstrating the utility of the approach on other heter-
ogeneous data sets, both simulated and experimental, as
well as its sensitivity to errors both in the a priori
knowledge sources and the radar sensor (e.g. antenna
calibration errors) itself.  
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